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Credits 

  These slides were sourced and/or modified from: 
 Christopher Bishop, Microsoft UK 
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Parametric Distributions 

  Basic building blocks: 
   Need to determine     given  
   Representation:        or           ? 

  Recall Curve Fitting 
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Binary Variables 

  Coin flipping: heads=1, tails=0 

  Bernoulli Distribution 
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Guidelines for Paper Presentations 

  Everyone should read the paper prior to the 
presentation and be prepared to discuss it. 
 What is the objective? 
 What tools from the course are being used? 
 What did you not understand? 
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Guidelines for Paper Presentations 

  For the presenter: 
 Your presentation should be around 10 minutes long – 

no more than 15! (About 10 slides) 
 What is the objective? 
 What tools from the course are being used and how? 
 What are the key ideas? 
 What are the unsolved problems? 
 Be prepared to answer questions from other students. 
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Binary Variables 

  N coin flips: 

  Binomial Distribution 



Probability Distributions 

J. Elder CSE 6390/PSYC 6225 Computational Modeling of  Visual Perception 

9 

Binomial Distribution 
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Parameter Estimation  

  ML for Bernoulli 
   Given:  
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Parameter Estimation 

  Example: 
   Prediction: all future tosses will land heads up 

  Overfitting to D 
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Beta Distribution 

  Distribution over              . 

  

where Γ(x) = ux−1e−u du
0

∞

∫
Note that 
Γ(x +1) = xΓ(x)
Γ(1) = 1
Γ(x +1) = x! when x is an integer.
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Bayesian Bernoulli 

The Beta distribution provides the conjugate prior for the 
Bernoulli distribution. 
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Beta Distribution 
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Prior ·∙ Likelihood = Posterior 



Probability Distributions 

J. Elder CSE 6390/PSYC 6225 Computational Modeling of  Visual Perception 

16 

Properties of the Posterior 

As the size N of the data set increases 
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Multinomial Variables 

1-of-K coding scheme: 
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ML Parameter estimation 

  Given: 

  To ensure                  , use a Lagrange multiplier,  λ

See Appendix E for a review of Lagrange multipliers. 
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The Multinomial Distribution 

, , , 

   
where 

N
m1,m2 ,…,mK

⎛

⎝⎜
⎞

⎠⎟
≡

N !
m1!m2 !…,mK !

  for j ≠ k
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The Dirichlet Distribution 

Conjugate prior for the 
multinomial distribution. 

  
Since µk

k=1

K

∑ = 1
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Bayesian Multinomial  
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Bayesian Multinomial  
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The Gaussian Distribution 
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Central Limit Theorem  

 The distribution of the sum of N i.i.d. random 
variables becomes increasingly Gaussian as N grows. 
 Example: N uniform [0,1] random variables. 
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Geometry of the Multivariate Gaussian 

  where Δ ≡ Mahalanobis distance from µ  to x

See Appendix C for a review of 
matrices and eigenvectors. 

   where (ui ,λi ) are the ith eigenvector and eigenvalue of Σ.
  Eigenvector equation:  Σui = λiui

  Note that Σ real and symmetric →  λi  real.

Proof? 
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Geometry of the Multivariate Gaussian 

  Δ = Mahalanobis distance from µ  to x

   where (ui ,λi ) are the ith eigenvector and eigenvalue of Σ.

   or y = U(x - µ)
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Moments of the Multivariate Gaussian  

thanks to anti-symmetry of z  
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Moments of the Multivariate Gaussian  
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Partitioned Gaussian Distributions 
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Partitioned Conditionals and Marginals 
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Partitioned Conditionals and Marginals 
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Maximum Likelihood for the Gaussian  

  Given i.i.d. data                             , the log likeli-
hood function is given by 

  Sufficient statistics 
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Maximum Likelihood for the Gaussian  

  Set the derivative of  the log likelihood function to zero, 

  and solve to obtain 

  Similarly 

  
Recall:  If x  and a  are vectors, then 

∂
∂x

xta( ) = ∂
∂x

atx( ) = a
⎛
⎝⎜

⎞
⎠⎟
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Maximum Likelihood for the Gaussian  

Under the true distribution 

Hence define  
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  Assume     is known. Given i.i.d. data 
                           , the likelihood function for 
   is given by 

  This has a Gaussian shape as a function of   (but it 
is not a distribution over  ). 

 σ
2

µ

µ
µ

Bayesian Inference for the Gaussian (Univariate Case) 
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Bayesian Inference for the Gaussian (Univariate Case) 

  Combined with a Gaussian prior over   , 

  this gives the posterior 

  Completing the square over   , we see that 

µ

µ
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Bayesian Inference for the Gaussian 

  … where 

  Note:   

Shortcut:  Get Δ2  in form aµ2 − 2bµ + c = a(µ − b / a)2 + const and identify
µN = b / a
1
σ N

2 = a
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Bayesian Inference for the Gaussian 

  Example:                                   for N = 0, 1, 2 
and 10. 
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Bayesian Inference for the Gaussian 

  Sequential Estimation 

  The posterior obtained after observing N { 1 data 
points becomes the prior when we observe the N th 
data point. 
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Bayesian Inference for the Gaussian 

  Now assume   is known. The likelihood function for  
       is given by 

  This has a Gamma shape as a function of   . 

µ

 λ = 1/ σ 2

λ
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Bayesian Inference for the Gaussian 

  The Gamma distribution 
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Bayesian Inference for the Gaussian  

  Now we combine a Gamma prior,                     
with the likelihood function for   to obtain 

  which we recognize as                       with  

λ
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Bayesian Inference for the Gaussian  

  If both   and   are unknown, the joint likelihood 
function is given by 

  We need a prior with the same functional 
dependence on   and   . 

λµ

λµ
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Bayesian Inference for the Gaussian  

  The Gaussian-gamma distribution 
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Bayesian Inference for the Gaussian 

  The Gaussian-gamma distribution 
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Bayesian Inference for the Gaussian 

  Multivariate conjugate priors 
•    unknown,    known: p(  ) Gaussian. 
•    unknown,    known: p(  ) Wishart, 

•    and    unknown: p(  ,  ) Gaussian-Wishart, 

Λµ
Λ µ

µ
Λ

Λµ Λµ
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Student’s t-Distribution 

  where 

  Infinite mixture of Gaussians. 
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Student’s t-Distribution 
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Student’s t-Distribution 

  Robustness to outliers: Gaussian vs t-distribution. 
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Student’s t-Distribution 

  The D-variate case: 

  where                               . 

  Properties: 
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Periodic variables 

•  Examples: time of day, direction, … 
•  We require 
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von Mises Distribution 

  This requirement is satisfied by  

  where 

  is the 0th order modified Bessel function of the 1st 
kind. 

(The von Mises distribution is the intersection of an isotropic bivariate Gaussian with the unit circle) 
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von Mises Distribution 
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Maximum Likelihood for von Mises 

  Given a data set,                                , the log likelihood 
function is given by 

  Maximizing with respect to µ0 we directly obtain 

  Similarly, maximizing with respect to m we get 

  which can be solved numerically for mML. 
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Mixtures of Gaussians 

  Old Faithful data set 

Single Gaussian Mixture of two Gaussians 

D
ur
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n 
of

 la
st
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ru

pt
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(m

in
) 

Time to next eruption (min) 
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Mixtures of Gaussians 

  Combine simple models  
into a complex model: 

Component 

Mixing coefficient 
K=3 
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Mixtures of Gaussians 
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Mixtures of Gaussians 

  Determining parameters   using maximum 
log likelihood 

  Solution: use standard, iterative, numeric 
optimization methods or the expectation 
maximization algorithm (Chapter 9).  

Log of a sum; no closed form maximum. 

 µ,  σ  and π


