PROBABILITY DISTRIBUTIONS

Credits

\square These slides were sourced and/or modified from:

- Christopher Bishop, Microsoft UK

Parametric Distributions

\square Basic building blocks: $p(\mathbf{x} \mid \boldsymbol{\theta})$Need to determine $\boldsymbol{\theta}$ given $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$
$\square \quad$ Representation: $\boldsymbol{\theta}^{\star}$ or $p(\boldsymbol{\theta})$?
\square Recall Curve Fitting

$$
p(t \mid x, \mathbf{x}, \mathbf{t})=\int p(t \mid x, \mathbf{w}) p(\mathbf{w} \mid \mathbf{x}, \mathbf{t}) \mathrm{d} \mathbf{w}
$$

Binary Variables

\square Coin flipping: heads $=1$, tails $=0$

$$
p(x=1 \mid \mu)=\mu
$$

\square Bernoulli Distribution

$$
\begin{aligned}
\operatorname{Bern}(x \mid \mu) & =\mu^{x}(1-\mu)^{1-x} \\
\mathbb{E}[x] & =\mu \\
\operatorname{var}[x] & =\mu(1-\mu)
\end{aligned}
$$

END OF LECTURE MON SEPT 20, 2010

Guidelines for Paper Presentations

\square Everyone should read the paper prior to the presentation and be prepared to discuss it.
\square What is the objective?
\square What tools from the course are being used?
\square What did you not understand?

Guidelines for Paper Presentations

\square For the presenter:
\square Your presentation should be around 10 minutes long no more than 15! (About 10 slides)
\square What is the objective?
\square What tools from the course are being used and how?
\square What are the key ideas?
\square What are the unsolved problems?
\square Be prepared to answer questions from other students.

Binary Variables

$\square \mathrm{N}$ coin flips:

$$
p(m \text { heads } \mid N, \mu)
$$

\square Binomial Distribution

$$
\begin{gathered}
\operatorname{Bin}(m \mid N, \mu)=\binom{N}{m} \mu^{m}(1-\mu)^{N-m} \\
\mathbb{E}[m] \equiv \sum_{m=0}^{N} m \operatorname{Bin}(m \mid N, \mu)=N \mu \\
\operatorname{var}[m] \equiv \sum_{m=0}^{N}(m-\mathbb{E}[m])^{2} \operatorname{Bin}(m \mid N, \mu)=N \mu(1-\mu)
\end{gathered}
$$

Binomial Distribution

Parameter Estimation

ML for Bernoulli

Given:

$$
\begin{gathered}
\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}, m \text { heads }(1), N-m \text { tails }(0) \\
p(\mathcal{D} \mid \mu)=\prod_{n=1}^{N} p\left(x_{n} \mid \mu\right)=\prod_{n=1}^{N} \mu^{x_{n}}(1-\mu)^{1-x_{n}} \\
\ln p(\mathcal{D} \mid \mu)=\sum_{n=1}^{N} \ln p\left(x_{n} \mid \mu\right)=\sum_{n=1}^{N}\left\{x_{n} \ln \mu+\left(1-x_{n}\right) \ln (1-\mu)\right\} \\
\mu_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} x_{n}=\frac{m}{N}
\end{gathered}
$$

Parameter Estimation

\square Example: $\quad \mathcal{D}=\{1,1,1\} \rightarrow \mu_{\mathrm{ML}}=\frac{3}{3}=1$
Prediction: all future tosses will land heads up

Overfitting to D

Beta Distribution

Distribution over $\mu \in[0,1]$.

$$
\begin{aligned}
\operatorname{Beta}(\mu \mid a, b) & =\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \mu^{a-1}(1-\mu)^{b-1} \\
\mathbb{E}[\mu] & =\frac{a}{a+b} \\
\operatorname{var}[\mu] & =\frac{a b}{(a+b)^{2}(a+b+1)}
\end{aligned}
$$

where $\Gamma(x)=\int_{0}^{\infty} u^{x-1} e^{-u} d u$
Note that
$\Gamma(x+1)=x \Gamma(x)$
$\Gamma(1)=1$
$\Gamma(x+1)=x!$ when x is an integer.

Bayesian Bernoulli

$$
\begin{aligned}
p\left(\mu \mid a_{0}, b_{0}, \mathcal{D}\right) & \propto p(\mathcal{D} \mid \mu) p\left(\mu \mid a_{0}, b_{0}\right) \\
& =\left(\prod_{n=1}^{N} \mu^{x_{n}}(1-\mu)^{1-x_{n}}\right) \operatorname{Beta}\left(\mu \mid a_{0}, b_{0}\right) \\
& \propto \mu^{m+a_{0}-1}(1-\mu)^{(N-m)+b_{0}-1} \\
& \propto \operatorname{Beta}\left(\mu \mid a_{N}, b_{N}\right) \\
a_{N}= & a_{0}+m \quad b_{N}=b_{0}+(N-m)
\end{aligned}
$$

The Beta distribution provides the conjugate prior for the Bernoulli distribution.

Beta Distribution

Prior•Likelihood $=$ Posterior

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception
J. Elder

Properties of the Posterior

As the size N of the data set increases

$$
\begin{aligned}
a_{N} & \rightarrow m \\
b_{N} & \rightarrow N-m \\
\mathbb{E}[\mu] & =\frac{a_{N}}{a_{N}+b_{N}} \rightarrow \frac{m}{N}=\mu_{\mathrm{ML}} \\
\operatorname{var}[\mu] & =\frac{a_{N} b_{N}}{\left(a_{N}+b_{N}\right)^{2}\left(a_{N}+b_{N}+1\right)} \rightarrow 0
\end{aligned}
$$

Multinomial Variables

$$
\begin{gathered}
\text { 1-of-K coding scheme: } \quad \mathbf{x}=(0,0,1,0,0,0)^{\mathrm{T}} \\
p(\mathbf{x} \mid \boldsymbol{\mu})=\prod_{k=1}^{K} \mu_{k}^{x_{k}} \\
\forall k: \mu_{k} \geqslant 0 \quad \text { and } \quad \sum_{k=1}^{K} \mu_{k}=1 \\
\mathbb{E}[\mathbf{x} \mid \boldsymbol{\mu}]=\sum_{\mathbf{x}} p(\mathbf{x} \mid \boldsymbol{\mu}) \mathbf{x}=\left(\mu_{1}, \ldots, \mu_{K}\right)^{\mathrm{T}}=\boldsymbol{\mu} \\
\sum_{\mathbf{x}} p(\mathbf{x} \mid \boldsymbol{\mu})=\sum_{k=1}^{K} \mu_{k}=1
\end{gathered}
$$

ML Parameter estimation

\square Given:

$$
\begin{aligned}
& \mathcal{D}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} \\
& p(\mathcal{D} \mid \boldsymbol{\mu})=\prod_{n=1}^{N} \prod_{k=1}^{K} \mu_{k}^{x_{n k}}=\prod_{k=1}^{K} \mu_{k}^{\left(\sum_{n} x_{n k}\right)}=\prod_{k=1}^{K} \mu_{k}^{m_{k}}
\end{aligned}
$$

\square To ensure $\sum_{k} \mu_{k}=1$, use a Lagrange multiplier, λ

$$
\begin{gathered}
\sum_{k=1}^{K} m_{k} \ln \mu_{k}+\lambda\left(\sum_{k=1}^{K} \mu_{k}-1\right) \\
\mu_{k}=-m_{k} / \lambda \quad \mu_{k}^{\mathrm{ML}}=\frac{m_{k}}{N}
\end{gathered}
$$

See Appendix E for a review of Lagrange multipliers.

The Multinomial Distribution

$$
\begin{aligned}
& \operatorname{Mult}\left(m_{1}, m_{2}, \ldots, m_{K} \mid \boldsymbol{\mu}, N\right)=\binom{N}{m_{1} m_{2}, \ldots, m_{K}} \prod_{k=1}^{K} \mu_{k}^{m_{k}} \\
& \mathbb{E}\left[m_{k}\right]=N \mu_{k} \\
& \operatorname{var}\left[m_{k}\right]=N \mu_{k}\left(1-\mu_{k}\right) \\
& \operatorname{cov}\left[m_{j} m_{k}\right]=-N \mu_{j} \mu_{k} \text { for } j \neq k \\
& \text { where }\left(\frac{N}{m_{1}, m_{2}, \ldots, m_{K}}\right) \equiv \frac{N!}{m_{1}!m_{2}!\ldots, m_{K}!}
\end{aligned}
$$

The Dirichlet Distribution

$\operatorname{Dir}(\boldsymbol{\mu} \mid \boldsymbol{\alpha})=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{K}\right)} \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}-1}$ $\alpha_{0}=\sum_{k=1}^{K} \alpha_{k}$

Conjugate prior for the multinomial distribution.

Bayesian Multinomial

$$
\begin{gathered}
p(\boldsymbol{\mu} \mid \mathcal{D}, \boldsymbol{\alpha}) \propto p(\mathcal{D} \mid \boldsymbol{\mu}) p(\boldsymbol{\mu} \mid \boldsymbol{\alpha}) \propto \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}+m_{k}-1} \\
\begin{aligned}
p(\boldsymbol{\mu} \mid \mathcal{D}, \boldsymbol{\alpha}) & =\operatorname{Dir}(\boldsymbol{\mu} \mid \boldsymbol{\alpha}+\mathbf{m}) \\
= & \frac{\Gamma\left(\alpha_{0}+N\right)}{\Gamma\left(\alpha_{1}+m_{1}\right) \cdots \Gamma\left(\alpha_{K}+m_{K}\right)} \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}+m_{k}-1}
\end{aligned}
\end{gathered}
$$

Bayesian Multinomial

$\alpha_{k}=10^{-1}$

$\alpha_{k}=10^{0}$

$\alpha_{k}=10^{1}$

The Gaussian Distribution

$$
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

Central Limit Theorem

\square The distribution of the sum of N i.i.d. random variables becomes increasingly Gaussian as N grows. \square Example: N uniform $[0,1]$ random variables.

Geometry of the Multivariate Gaussian

$\Delta^{2}=(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \quad$ where $\Delta \equiv$ Mahalanobis distance from μ to x

Eigenvector equation: $\Sigma u_{i}=\lambda_{i} u_{i}$
where $\left(\mathbf{u}_{i}, \lambda_{i}\right)$ are the i th eigenvector and eigenvalue of Σ.
Note that Σ real and symmetric $\rightarrow \lambda_{i}$ real.

Proof?

See Appendix C for a review of matrices and eigenvectors.

Geometry of the Multivariate Gaussian

$$
\begin{aligned}
& \Delta^{2}=(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \quad \Delta=\text { Mahalanobis distance from } \mu \text { to } x \\
& \boldsymbol{\Sigma}^{-1}=\sum_{i=1}^{D} \frac{1}{\lambda_{i}} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathrm{T}} \quad \text { where }\left(\mathbf{u}_{i}, \lambda_{i}\right) \text { are the } i \text { th eigenvector and eigenvalue of } \boldsymbol{\Sigma} . \\
& \Delta^{2}=\sum_{i=1}^{D} \frac{y_{i}^{2}}{\lambda_{i}} \\
& y_{i}=\mathbf{u}_{i}^{\mathrm{T}}(\mathbf{x}-\boldsymbol{\mu}) \\
& \text { or } \mathbf{y}=\mathbf{U}(\mathbf{x}-\mu)
\end{aligned}
$$

Moments of the Multivariate Gaussian

$$
\begin{aligned}
\mathbb{E}[\mathbf{x}] & =\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \int \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\} \mathbf{x} \mathrm{d} \mathbf{x} \\
& =\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \int \exp \left\{-\frac{1}{2} \mathbf{z}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \mathbf{z}\right\}(\mathbf{z}+\boldsymbol{\mu}) \mathrm{d} \mathbf{z}
\end{aligned}
$$

thanks to anti-symmetry of Z

$$
\mathbb{E}[\mathbf{x}]=\mu
$$

Moments of the Multivariate Gaussian

$$
\begin{gathered}
\mathbb{E}\left[\mathbf{x x}^{\mathrm{T}}\right]=\boldsymbol{\mu} \boldsymbol{\mu}^{\mathrm{T}}+\boldsymbol{\Sigma} \\
\operatorname{cov}[\mathbf{x}]=\mathbb{E}\left[(\mathbf{x}-\mathbb{E}[\mathbf{x}])(\mathbf{x}-\mathbb{E}[\mathbf{x}])^{\mathrm{T}}\right]=\boldsymbol{\Sigma}
\end{gathered}
$$

Partitioned Gaussian Distributions

$$
\begin{gathered}
p(\mathbf{x})=\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
\mathbf{x}=\binom{\mathbf{x}_{a}}{\mathbf{x}_{b}} \quad \boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{a}}{\boldsymbol{\mu}_{b}} \quad \boldsymbol{\Sigma}=\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{a a} & \boldsymbol{\Sigma}_{a b} \\
\boldsymbol{\Sigma}_{b a} & \boldsymbol{\Sigma}_{b b}
\end{array}\right) \\
\boldsymbol{\Lambda} \equiv \boldsymbol{\Sigma}^{-1} \quad \boldsymbol{\Lambda}=\left(\begin{array}{cc}
\boldsymbol{\Lambda}_{a a} & \boldsymbol{\Lambda}_{a b} \\
\boldsymbol{\Lambda}_{b a} & \boldsymbol{\Lambda}_{b b}
\end{array}\right)
\end{gathered}
$$

Partitioned Conditionals and Marginals

$$
\begin{gathered}
p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right)=\mathcal{N}\left(\mathbf{x}_{a} \mid \boldsymbol{\mu}_{a \mid b}, \boldsymbol{\Sigma}_{a \mid b}\right) \\
\boldsymbol{\Sigma}_{a \mid b}=\boldsymbol{\Lambda}_{a a}^{-1}=\boldsymbol{\Sigma}_{a a}-\boldsymbol{\Sigma}_{a b} \boldsymbol{\Sigma}_{b b}^{-1} \boldsymbol{\Sigma}_{b a} \\
\boldsymbol{\mu}_{a \mid b}=\boldsymbol{\Sigma}_{a \mid b}\left\{\boldsymbol{\Lambda}_{a a} \boldsymbol{\mu}_{a}-\boldsymbol{\Lambda}_{a b}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right)\right\} \\
=\boldsymbol{\mu}_{a}-\boldsymbol{\Lambda}_{a a}^{-1} \boldsymbol{\Lambda}_{a b}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right) \\
=\boldsymbol{\mu}_{a}+\boldsymbol{\Sigma}_{a b} \boldsymbol{\Sigma}_{b b}^{-1}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right) \\
p\left(\mathbf{x}_{a}\right)=\int p\left(\mathbf{x}_{a}, \mathbf{x}_{b}\right) \mathrm{d} \mathbf{x}_{b} \\
=\mathcal{N}\left(\mathbf{x}_{a} \mid \boldsymbol{\mu}_{a}, \boldsymbol{\Sigma}_{a a}\right)
\end{gathered}
$$

Partitioned Conditionals and Marginals

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception
J. Elder

Maximum Likelihood for the Gaussian

Given i.i.d. data $\mathbf{X}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)^{\mathrm{T}}$, the log likelihood function is given by

$$
\ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=-\frac{N D}{2} \ln (2 \pi)-\frac{N}{2} \ln |\boldsymbol{\Sigma}|-\frac{1}{2} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}\right)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n}-\boldsymbol{\mu}\right)
$$

\square Sufficient statistics

$$
\sum_{n=1}^{N} \mathbf{x}_{n} \quad \sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathrm{T}}
$$

Maximum Likelihood for the Gaussian

\square Set the derivative of the log likelihood function to zero,

$$
\frac{\partial}{\partial \boldsymbol{\mu}} \ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{n=1}^{N} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n}-\boldsymbol{\mu}\right)=0
$$

\square and solve to obtain

Similarly

$$
\boldsymbol{\mu}_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}
$$

$$
\boldsymbol{\Sigma}_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)^{\mathrm{T}}
$$

(Recall: If \mathbf{x} and \mathbf{a} are vectors, then $\left.\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{x}^{\mathbf{t}} \mathbf{a}\right)=\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{a}^{\mathbf{t}} \mathbf{x}\right)=\mathbf{a}\right)$

Maximum Likelihood for the Gaussian

Under the true distribution

$$
\begin{aligned}
\mathbb{E}\left[\boldsymbol{\mu}_{\mathrm{ML}}\right] & =\boldsymbol{\mu} \\
\mathbb{E}\left[\boldsymbol{\Sigma}_{\mathrm{ML}}\right] & =\frac{N-1}{N} \boldsymbol{\Sigma}
\end{aligned}
$$

Hence define

$$
\widetilde{\boldsymbol{\Sigma}}=\frac{1}{N-1} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)^{\mathrm{T}}
$$

Bayesian Inference for the Gaussian (Univariate Case)

\square Assume σ^{2} is known. Given i.i.d. data $\mathbf{x}=\left\{x_{1}, \ldots, x_{N}\right\}$, the likelihood function for μ is given by
$p(\mathbf{x} \mid \mu)=\prod_{n=1}^{N} p\left(x_{n} \mid \mu\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{N / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\}$.
\square This has a Gaussian shape as a function of μ (but it is not a distribution over μ).

Bayesian Inference for the Gaussian (Univariate Case)

\square Combined with a Gaussian prior over μ,

$$
p(\mu)=\mathcal{N}\left(\mu \mid \mu_{0}, \sigma_{0}^{2}\right) .
$$

this gives the posterior

$$
p(\mu \mid \mathbf{x}) \propto p(\mathbf{x} \mid \mu) p(\mu)
$$

\square Completing the square over μ, we see that

$$
p(\mu \mid \mathbf{x})=\mathcal{N}\left(\mu \mid \mu_{N}, \sigma_{N}^{2}\right)
$$

Bayesian Inference for the Gaussian

... where

$$
\begin{aligned}
\mu_{N} & =\frac{\sigma^{2}}{N \sigma_{0}^{2}+\sigma^{2}} \mu_{0}+\frac{N \sigma_{0}^{2}}{N \sigma_{0}^{2}+\sigma^{2}} \mu_{\mathrm{ML}}, \quad \mu_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \\
\frac{1}{\sigma_{N}^{2}} & =\frac{1}{\sigma_{0}^{2}}+\frac{N}{\sigma^{2}} .
\end{aligned}
$$

Shortcut: Get Δ^{2} in form $a \mu^{2}-2 b \mu+c=a(\mu-b / a)^{2}+$ const and identify $\mu_{N}=b / a$

$$
\frac{1}{\sigma_{N}^{2}}=a
$$

Note: | | | $N=0$ | $N \rightarrow \infty$ |
| :---: | :---: | :---: | :---: |
| | μ_{N} | μ_{0} | μ_{ML} |
| | σ_{N}^{2} | σ_{0}^{2} | 0 |

Bayesian Inference for the Gaussian

\square Example: $p(\mu \mid \mathbf{x})=\mathcal{N}\left(\mu \mid \mu_{N}, \sigma_{N}^{2}\right)$ for $\mathbf{N}=0,1,2$ and 10.

Bayesian Inference for the Gaussian

\square Sequential Estimation

$$
\begin{aligned}
p(\mu \mid \mathbf{x}) & \propto p(\mu) p(\mathbf{x} \mid \mu) \\
& =\left[p(\mu) \prod_{n=1}^{N-1} p\left(x_{n} \mid \mu\right)\right] p\left(x_{N} \mid \mu\right) \\
& \propto \mathcal{N}\left(\mu \mid \mu_{N-1}, \sigma_{N-1}^{2}\right) p\left(x_{N} \mid \mu\right)
\end{aligned}
$$

\square The posterior obtained after observing N \{ 1 data points becomes the prior when we observe the $\mathrm{N}^{\text {th }}$ data point.

Bayesian Inference for the Gaussian

\square Now assume μ is known. The likelihood function for $\lambda=1 / \sigma^{2}$ is given by

$$
p(\mathbf{x} \mid \lambda)=\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \lambda^{-1}\right) \propto \lambda^{N / 2} \exp \left\{-\frac{\lambda}{2} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\}
$$

\square This has a Gamma shape as a function of λ.

Bayesian Inference for the Gaussian

The Gamma distribution

$$
\begin{gathered}
\operatorname{Gam}(\lambda \mid a, b)=\frac{1}{\Gamma(a)} b^{a} \lambda^{a-1} \exp (-b \lambda) \\
\mathbb{E}[\lambda]=\frac{a}{b}
\end{gathered} \quad \operatorname{var}[\lambda]=\frac{a}{b^{2}} \quad .
$$

Bayesian Inference for the Gaussian

\square Now we combine a Gamma prior, $\operatorname{Gam}\left(\lambda \mid a_{0}, b_{0}\right)$ with the likelihood function for λ to obtain

$$
p(\lambda \mid \mathbf{x}) \propto \lambda^{a_{0}-1} \lambda^{N / 2} \exp \left\{-b_{0} \lambda-\frac{\lambda}{2} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\}
$$

\square which we recognize as $\operatorname{Gam}\left(\lambda \mid a_{N}, b_{N}\right)$ with

$$
\begin{aligned}
& a_{N}=a_{0}+\frac{N}{2} \\
& b_{N}=b_{0}+\frac{1}{2} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}=b_{0}+\frac{N}{2} \sigma_{\mathrm{ML}}^{2} .
\end{aligned}
$$

Bayesian Inference for the Gaussian

\square If both μ and λ are unknown, the joint likelihood function is given by

$$
\begin{aligned}
& p(\mathbf{x} \mid \mu, \lambda)=\prod_{n=1}^{N}\left(\frac{\lambda}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{\lambda}{2}\left(x_{n}-\mu\right)^{2}\right\} \\
& \quad \propto\left[\lambda^{1 / 2} \exp \left(-\frac{\lambda \mu^{2}}{2}\right)\right]^{N} \exp \left\{\lambda \mu \sum_{n=1}^{N} x_{n}-\frac{\lambda}{2} \sum_{n=1}^{N} x_{n}^{2}\right\} .
\end{aligned}
$$

\square We need a prior with the same functional dependence on μ and λ.

Bayesian Inference for the Gaussian

The Gaussian-gamma distribution

$$
\begin{aligned}
& p(\mu, \lambda)=\mathcal{N}\left(\mu \mid \mu_{0},(\beta \lambda)^{-1}\right) \operatorname{Gam}(\lambda \mid a, b) \\
& \quad \propto \quad \exp \left\{-\frac{\beta \lambda}{2}\left(\mu-\mu_{0}\right)^{2}\right\} \lambda^{a-1} \exp \{-b \lambda\}
\end{aligned}
$$

Bayesian Inference for the Gaussian

\square The Gaussian-gamma distribution

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Bayesian Inference for the Gaussian

\square Multivariate conjugate priors

- μ unknown, Λ known: $\mathrm{p}(\mu)$ Gaussian.
- Λ unknown, μ known: $\mathrm{p}(\Lambda)$ Wishart,

$$
\mathcal{W}(\boldsymbol{\Lambda} \mid \mathbf{W}, \nu)=B|\boldsymbol{\Lambda}|^{(\nu-D-1) / 2} \exp \left(-\frac{1}{2} \operatorname{Tr}\left(\mathbf{W}^{-1} \boldsymbol{\Lambda}\right)\right)
$$

- μ and Λ unknown: $\mathrm{p}(\mu, \Lambda)$ Gaussian-Wishart,

$$
p\left(\boldsymbol{\mu}, \boldsymbol{\Lambda} \mid \boldsymbol{\mu}_{0}, \beta, \mathbf{W}, \nu\right)=\mathcal{N}\left(\boldsymbol{\mu} \mid \boldsymbol{\mu}_{0},(\beta \boldsymbol{\Lambda})^{-1}\right) \mathcal{W}(\boldsymbol{\Lambda} \mid \mathbf{W}, \nu)
$$

Student's t-Distribution

$$
\begin{aligned}
p(x \mid \mu, a, b) & =\int_{0}^{\infty} \mathcal{N}\left(x \mid \mu, \tau^{-1}\right) \operatorname{Gam}(\tau \mid a, b) \mathrm{d} \tau \\
& =\int_{0}^{\infty} \mathcal{N}\left(x \mid \mu,(\eta \lambda)^{-1}\right) \operatorname{Gam}(\eta \mid \nu / 2, \nu / 2) \mathrm{d} \eta \\
& =\frac{\Gamma(\nu / 2+1 / 2)}{\Gamma(\nu / 2)}\left(\frac{\lambda}{\pi \nu}\right)^{1 / 2}\left[1+\frac{\lambda(x-\mu)^{2}}{\nu}\right]^{-\nu / 2-1 / 2} \\
& =\operatorname{St}(x \mid \mu, \lambda, \nu)
\end{aligned}
$$

\square where

$$
\lambda=a / b \quad \eta=\tau b / a \quad \nu=2 a .
$$

\square Infinite mixture of Gaussians.

Student's t-Distribution

Student's t-Distribution

\square Robustness to outliers: Gaussian vs t-distribution.

Student's t-Distribution

The D-variate case:$$
\begin{aligned}
& \begin{aligned}
& \operatorname{St}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}, \nu)=\int_{0}^{\infty} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu},(\eta \boldsymbol{\Lambda})^{-1}\right) \operatorname{Gam}(\eta \mid \nu / 2, \nu / 2) \mathrm{d} \eta \\
&=\frac{\Gamma(D / 2+\nu / 2)}{\Gamma(\nu / 2)} \frac{|\boldsymbol{\Lambda}|^{1 / 2}}{(\pi \nu)^{D / 2}}\left[1+\frac{\Delta^{2}}{\nu}\right]^{-D / 2-\nu / 2} \\
& \text { where } \\
& \qquad \Delta^{2}=(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Lambda}(\mathbf{x}-\boldsymbol{\mu})
\end{aligned}
\end{aligned}
$$

\square Properties:

$$
\begin{aligned}
\mathbb{E}[\mathbf{x}] & =\boldsymbol{\mu}, & & \text { if } \nu>1 \\
\operatorname{cov}[\mathbf{x}] & =\frac{\nu}{(\nu-2)} \boldsymbol{\Lambda}^{-1}, & & \text { if } \nu>2 \\
\operatorname{mode}[\mathbf{x}] & =\boldsymbol{\mu} & &
\end{aligned}
$$

Periodic variables

- Examples: time of day, direction, ...
- We require

$$
\begin{aligned}
p(\theta) & \geqslant 0 \\
\int_{0}^{2 \pi} p(\theta) \mathrm{d} \theta & =1 \\
p(\theta+2 \pi) & =p(\theta)
\end{aligned}
$$

von Mises Distribution

\square This requirement is satisfied by

$$
p\left(\theta \mid \theta_{0}, m\right)=\frac{1}{2 \pi I_{0}(m)} \exp \left\{m \cos \left(\theta-\theta_{0}\right)\right\}
$$

where

$$
I_{0}(m)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp \{m \cos \theta\} \mathrm{d} \theta
$$

\square is the $0^{\text {th }}$ order modified Bessel function of the $1^{\text {st }}$ kind.
(The von Mises distribution is the intersection of an isotropic bivariate Gaussian with the unit circle)

von Mises Distribution

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception
J. Elder

Maximum Likelihood for von Mises

\square Given a data set, $\mathcal{D}=\left\{\theta_{1}, \ldots, \theta_{N}\right\}$, the log likelihood function is given by

$$
\ln p\left(\mathcal{D} \mid \theta_{0}, m\right)=-N \ln (2 \pi)-N \ln I_{0}(m)+m \sum_{n=1}^{N} \cos \left(\theta_{n}-\theta_{0}\right)
$$

\square Maximizing with respect to μ_{0} we directly obtain

$$
\theta_{0}^{\mathrm{ML}}=\tan ^{-1}\left\{\frac{\sum_{n} \sin \theta_{n}}{\sum_{n} \cos \theta_{n}}\right\}
$$

\square Similarly, maximizing with respect to m we get

$$
\frac{I_{1}\left(m_{\mathrm{ML}}\right)}{I_{0}\left(m_{\mathrm{ML}}\right)}=\frac{1}{N} \sum_{n=1}^{N} \cos \left(\theta_{n}-\theta_{0}^{\mathrm{ML}}\right)
$$

\square which can be solved numerically for m_{ML}.

Mixtures of Gaussians

\square Old Faithful data set

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Mixtures of Gaussians

\square Combine simple models into a complex model:

$$
p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} \underbrace{\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}_{\text {Component }}
$$

$$
\forall k: \pi_{k} \geqslant 0 \quad \sum_{k=1}^{K} \pi_{k}=1
$$

Mixtures of Gaussians

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception
J. Elder

Mixtures of Gaussians

\square Determining parameters μ, σ and π using maximum log likelihood

$$
\ln p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{n=1}^{N} \ln \left\{\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}
$$

Log of a sum; no closed form maximum.
\square Solution: use standard, iterative, numeric optimization methods or the expectation maximization algorithm (Chapter 9).

